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SUMMARY 

The resolution function is commonly used to describe the extent of separation 
between successive peaks in a chromatogram. However, the resolution is usually 
defined in such a way that it is applicable only to symmetrical (Gaussian) peaks. 
Moreover, the resolution does not provide a realistic estimate of the extent of 
separation between two peaks with greatly different areas. Nevertheless, the main 
advantage of the resolution is that its value can be predicted from retention and 
efficiency data for the individual peaks. Simple methods are described to correct the 
resolution function for (i) large variations in peak areas and (ii) peak asymmetry. The 
corrections are derived as modifications of the resolution equation. An important 
consequence of these modifications is that the resolution for a pair of peaks has two 
different values, one for each peak. The new resolution equations were evaluated using 
computer-generated (exponentially modified Gaussian) peak profiles. The effects of 
varying degrees of peak asymmetry and varying peak-area ratios were studied. 

INTRODUCTION 

The most common way to describe the extent of separation between two 
successive peaks, i andj, in a chromatogram is by the resolution (R,), which is defined 
as 

R, = 
tj - ti 

‘/*(Wi + Wj) (1) 

where t is the retention time and w is the peak width. For Gaussian peaks the width is 
usually assumed to equal four times the standard deviation, u, corresponding to the 
width of the peak at 13.5% (e-‘) of its height. This results in 

R, = 
- ti 

+ 
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When eqn. 2 can be used to describe the extent of separation, the resolution can be 
predicted if the retention times and the standard deviations are known. For Gaussian 
peaks, the plate count, which is defined by 

N,.. ti 0 
2 

@i 

can be substituted for O, yielding 

tj - ti 
R,= - 

Zti/JNi + 2tjlJNj 

If, moreover, the plate count is the same for the two peaks (Ni = Nj EZ N), then 

R = tj - ti JN -.- 
s 

ti + tj 

k, 

R, = 
kj ~ ki JN 

2 + ki + kj T 

(3) 

(4) 

(5) 

(6) 

Eqns. 5 and 6 are very important for chromatography. Under the assumption of 
equal Nvalues, they allow the resolution to be calculated if the retention data (in terms 
of t or k) are known. This is especially important in two areas: 

(d) Column optimization. Chromatographic theory allows the effects of oper- 
ating parameters (e.g., flow-rate) and column characteristics (column length and 
diameter, particle size) to be predicted accurately. This allows the optimization of the 
column and operating parameters in order to obtain sufficient resolution in the 
shortest possible time, with the highest possible (detection) sensitivity, etc. (see, e.g., 
ref. 1, Chapter 7). Computer simulation’ may be used to optimize the conditions. 
However, in order to optimize the resolution, it must be possible to calculate its value 
under varying conditions in practical (non-symmetrical peaks of different height) 
rather than theoretical (Gaussian peaks of equal height) situations. 

(ii) Selectivity optimization. A number of methods have been developed 
especially for the optimization of chromatographic selectivity’. These interpretive 
methods rely on the observation that the retention of individual solutes can be 
predicted from a few experimental data. The quality of the separation in the entire 
chromatogram is a much more complicated function, which can be calculated from the 
retention data of the individual solutes if a sensible value for the resolution can be 
calculated from the retention data. 

Alternative measures for the extent of separation between successive peaks have 
been suggested (see ref. 1, section 4.2). In particular, resolution criteria may be defined 
on the basis of peak-to-valley or valley-to-peak ratios. The main advantage of these 
empirical functions (abbreviated to P values) is that they are more generally valid for 
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chromatographic peaks of any shape or size, as long as the required characteristics 
(valley and peak heights) can be obtained from the chromatogram. A first major 
disadvantage is that there will be a threshold range in which peaks overlap severely, but 
not completely. In this range the resolution may differ significantly from zero, but no 
valley can be observed so that all P values equal zero. Secondly, for non-Gaussian 
peaks P values cannot be predicted on the basis of retention times and column 
efficiencies (plate counts), so that they cannot be used in the two important areas 
outlined above. 

In this paper we shall try to define simple equations for calculating the resolution 
(R,) in practical situations. In addition to retention and efficiency data, some 
information will necessarily be required on the size (for peak-height correction) or the 
asymmetry of the actual peaks, but one of the aims of this work was to keep the 
corrections as simple as possible and the number of additional parameters to 
a minimum. 

THEORY 

Large variations in peak areas 
One factor that appears to affect the resolution between two successive peaks in 

a chromatogram, but which is not taken into account in any of the equations given in 
the Introduction, is the (relative) height or area of the two peaks (see, e.g., ref. 3, 
Section 2.5). When two successive peaks have different heights (or areas), the relative 
overlap is larger for the smaller peak. The relative overlap can be found from the part 
of the peak area where the two solutes are eluted together (Aij) and the total area of the 
peak. For example, for the first peak (i) in Fig. 1, 

The second peak in Fig. 1 overlaps with both the first and third peaks, so that 

Fig. I I Illustration of the relative peak overlap (RO). 
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and 

kRO. = Aj, 
I 

A_i 
(84 

If the detection sensitivity is similar for the different peaks, then the relative overlap is 
a good indication of the extent to which solutes are separated. RO is not a practical 
resolution criterion, because it is very difficult to calculate its value from a chro- 
matogram. 

It is clear from eqns. 7 and 8 that RO will be different for peaks iand.iif the areas 
Ai and Ajare different. This is different from the resolution, R,, in the situation of eqns. 
5 and 6. Both equations yield a single (absolute) value for each pair of peaks (i.e., 
R,,ji = - R,,ij). If we are to correct the resolution for the difference in height between 
successive peaks, then this symmetry will no longer be found. Instead, there will be two 
different resolution values describing the separation between two successive peaks: one 
describing the extent to which the first peak is separated (R,J and one to characterize 
the separation of the second peak (R,,j). 

A Gaussian peak is described by 

J;:(t) = hi exp - i 
( > 

y * 
I 

where hi is the height of the peak, ri the retention time at the peak maximum and di the 
standard deviation. The width of the peak is 4ai (Le., t ~ tj = 20;) whenfi(t) equals 
hie-’ = 0.135hi. For a second peak 0) we find for the peak width at this height 

hi exp( -2) = hj exp - 
1 t - tj 
2 

( > 

* 
(T 

j 

from which we find 

t - tj 

( > 

* 

aj 
= 4 + 2 ln(hj/hJ 

or 

t = tj f CJjJ4 + 2 ln(hj/hJ 

(10) 

(11) 

so that the width of the second peak at 13.5% of the height of the first peak (indicated 
by the prefix i) is 

‘Wj = 20jJ4 + 2 ln(hj/hJ (13) 

We may now obtain the resolution of the first peak by applying eqn. 1 at h = 0. 135hi: 

‘R,,ji = 
tj - ti 

2Ui + f3jJ4 + 2 ln(hj/hJ 
(14) 
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If hi = h, eqn. 14 reduces to eqn. 2. If we introduce the plate count (eqn. 3) into eqn. 
14, we find 

‘Rs,ji = 
(tj - ti)JNiNj 

2tiJK + tj -JG J4 + 2 h(?Zj/lZi) 

and if Ni = Nj = N, then 

“R,,ji = 
(tj - ti)JN 

2tj + tjJ4 + 2 h(hj/hi) 

(15) 

(16) 

An analogous argument for the second peak at h = 0.135hi leads to 

jRs%ji = 
(tj - ti) JN 

tJ4 + 2 lIl(hi/hj) + 2tj 
(164 

According to eqns. 16 and 16a, the largest resolution value is obtained for the 
largest of the two peaks (‘R,,ji 2 jR,,ji if hi >, lzj and vice W~SU). Eqn. 16 may be used in 
interpretive optimization procedures, where the retention surfaces are modelled as 
a function of the parameters to be optimized. For Gaussian functions there is no need 
to model the peak heights, as h will vary according to 

h.=?!= @ 
I 

ti 1 + ki 
(17) 

where hP is the height peak i would have if it were to be eluted at ti = to (ki = 0). Only 
one experimental chromatogram is necessary to calculate ho values for all the peaks 
and eqn. 16 may be rewritten as 

2ti + tjJ4 + 2 ln(hy/h9) + 2 ln(ti/tj) 

(kj - ki)JE 

= 2 + 2ki + (1 + kj)J4 + 2 ln(hg/hP) + 2 ln{(l + kJ/(l + kj)} 
(18) 

The two separate criteria describing the resolution between two peaks may be 
used in different situations. If both iandjare relevant peaks in the chromatogram, then 
the lower value appears to be the more relevant. This implies that only the resolution 
for the smaller of two peaks should be considered. If, however, the analytical problem 
is to quantify the amount of solute corresponding to the larger peak and the small peak 
is a contaminant, the concentration of which is not relevant, then the resolution for the 
large peak is the relevant number. 

Careful considerations are required for using corrected resolution values in 
criteria describing the quality of separation for complete chromatograms rather than 
for pairs of successive peaks (see ref. 1, p. 140). 
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(a) 

h i r‘ 

‘hz0.135 hi a, 3 

_----_-----. 

1 
(b) 

Jh 

Fig. 2. (a) Illustration of the definition of the peak-width parameters a and b on the ascending and 
descending slope of a peak, respectively, at a certain fraction of the peak height (here 13.5%). (b) Illustration 
of the relevant parameters determining the resolution between two asymmetric peaks. ‘q, ‘bi, ‘uj and ‘bj are 
measured at the reference height for peak i, i.e., ‘h = 0.135hi and ju;, jbi, jaj and jb, are measured at the 
reference height for peak j, i.e., jh = 0.13.5/z,. 

Non-symmetrical peaks 

For non-Gaussian peaks eqn. 2 is strictly invalid, but eqn. 1 may be used as long 
as the peaks are symmetrical. For non-symmetrical peaks ‘/zig is not a good indication 
of the relevant peak width. Therefore, eqn. 1 may not be used. Instead4, the relevant 
widths are those of the descending (end) slope of peak i (bi) and the ascending 
(beginning) slope of pcakj (aj). This is illustrated in Fig. 2a, where it can be seen that 
a and b are defined on one slope of the peak, relative to the peak top. Parameters 
similar to a and b have been used to correct resolution values for the occurence of large, 
non-symmetrical peaks in a chromatogram 4. For Gaussian peaks a = h = 1/2~. In 
the general situation, in which the peaks are not Gaussians, we find 

tj - tJ 
R, = ____ 

hi + Uj 

(19) 

The parameter commonly used to characterize the degree of asymmetry of 
chromatographic peaks is the asymmetry factor, A,, which is defined at a certain 
fraction, x, of the peak height as 

At different values of x, not only will a and b be different, but their ratio may also 
change. Often, x is arbitrarily chosen to be 0.1, but x = 0.135 appears to be more 
logical (see above). However, when we define A, at a certain fraction of the peak height, 
then the absolute height at which a and b are measured in the chromatogram will 
generally be different for each peak in the chromatogram. This is illustrated in Fig. 2b. 
At any given height in the chromatogram we can, in principle, measure a and h values. 
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If we take peak i as our reference peak (as indicated by the prefix before the symbols), 
then the obvious “observation height” is 0.135hi. At this height A, can be calculated 
from eqn. 20 and the plate count from 

which for peak i itself is the conventional definition of N, but for all other peaks yields 

different values: 

'NjC16. tj ( > 
2 

'Uj + ihj 

Eqn. 21a yields smaller N values (iNj < ‘Nj) if peak j is larger than peak i and larger 
values (iNj > jNJ if peakj is smaller. Substitution of eqns. 20 and 21 in eqn. 19 yields 

‘R,,ji = 
(tj - fi) (1 + ‘A,,i) (1 + ‘As,j)JiNNj 

- - 
4’A,,iti( 1 + 'A,,j)J'Nj + 4tJ{1 + iAS,i)J'Ni 

cm 

If the peaks are symmetrical (A, = I), eqn. 22 reduces to eqn. 4. 
Eqn. 22 is fairly complex and it requires four parameters to obtain it from the 

chromatogram at the reference height (e.g., ‘ai, ‘bi, iUj and ‘bj). This is not very 
attractive and it may be difficult if the peaks are poorly resolved. Nevertheless, it has 
been demonstrated that relative peak widths (similar to a and h values) can be 
monitored during selectivity optimization procedures, yielding a separate surface next 
to the retention surfaces4. In the most dramatic situations, in which very large solvent 
or matrix peaks are present in the chromatogram, such a procedure should be 
followed. However, in situations in which the peaks are asymmetric and in which 
successive peaks differ significantly (e.g., by more than a factor of two) but not 
dramatically (e.g., by not more than a factor of ten) in height we should be looking for 
simplifications. 

In practical situations we find it acceptable to require measurements of the width 
and the asymmetry of each individual peak, if these factors are to be taken into 
account. Hence, ‘Ni, iA,,i, ‘Nj and jAs,j will usually be determined. However, the width 
and asymmetry of a peak at a reference height, determined by another peak (e.g., iNj 
and iAs,j), will not usually be available. From this limited information the most sensible 
approximation is to assume the asymmetry factors to be independent of the height, i.e., 
in eqn. 20 A: is assumed to be independent of X, but to correct for differences in the 
heights between successive peaks. In terms of eqn. 19 this leads to 

iR, = tj - fi = 
tj - ti 

‘hi + ‘Uj ‘hi + jUjJ1 + ‘/z h(hj/hJ 
(23) 
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With eqns. 20 and 21 we now find for the first peak 

‘R,,ji = 
(fj - ti)(l + ‘AsJ(l + j-4s,j)JiA$LVj 

- 

4fi,,iti(l + jA,,j)JjNj + 4tj(l + ‘A,,i)JiNiJ1 + l/2 ln(hj/hi) 
(24) 

The analogous equation for the second peak is 

jRs,ji = 
(tj - ti) (1 + ‘A,,i) (1 + ‘A,,j)J@X$ 

_ (24a) 
4’A,,iti(l + jAs,j)JjNjJl + l/z ln(hj/hJ + 4tj(l + ‘&,j)J’Ni 

If, moreover, we assume that ‘Ni = jNj = N and that iAs,i = ‘As,j = A,, then we find 
a simple expression for a corrected resolution function for peak i: 

‘R,,ji = 
(tj - tJ(l + A&” 

4Asti + 4tjJl + l/z ln(hj/h) 

For the second peak 0) the corresponding equation is 

jR,,ji = 
(tj - ti) (1 + A,) JN 

4Asti Jl + ‘/z ln(hi/hj) + 4tj 

(254 

Pb) 

Eqns. 25a and b present a simple means of correcting for both the asymmetry of 
peaks and for variations in peak height. However, unlike eqns. 16 and 18, Eqn. 25a is 
not exact. If the two peaks considered show vastly different peak widths or asymmetry 
factors then, strictly, eqn. 22 should be applied. 

For optimization purposes, eqns. 25a and b again represent two criteria for the 
separation between a pair of successive peaks, i.e., one for each peak. Either or both of 
these may be used for optimization purposes in three different manners: 

(1) correcting for differences in peak heights; this can be done if the 
concentrations in the sample are constant (e.g., in quality control situations); 

(2) assuming that hi = hj if the concentrations are not constant; 
(3) correcting for the largest possible difference in heights between peaks i and j, 

based on an expected range of possible solute concentrations. In this latter instance one 
should be aware of the increasingly approximate character of eqns. 25a and b with 
increasing peak-height ratios. 

In the following evaluation the usefulness of the rigorous eqn. 22 and the 
simplified eqns. 24 and 25a and b will be examined. 

EVALUATION PROCEDURE 

In order to evaluate the applicability of the equations derived in this paper for 
characterizing the resolution in non-ideal situations, we used a series of computer- 
generated peak profiles. Exponentially modified Gaussian (EMG) functions provide 
a very accurate description of the true peak shape in analytical (reversed-phase) liquid 
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chromatography (LC). In other forms of chromatography the peak shapes may be 
different. For example, this will be the case in preparative LC. We have tested the 
present equations for EMG peaks, because of our intention to apply them for the 
purpose of optimizating analytical separations. This does not imply that use of the 
equations should be limited to EMG peaks. For other asymmetric peaks they will 
almost certainly yield more useful values than the conventional definition for R,. 

A series of EMG peaks were generated, with varying values for the time constant 
(t) of the exponential decay’. The parameters of the Gaussian function were t,,, = 15 
min and gr = 0.474 min (corresponding to 1000 theoretical plates for z = 0) for the 
first peak. The values for t were 0 (Gaussian peak), 1,2,3,4 and 5 min. The t,,, value 
of the second peak was increased from 15.8 to 19.0 min, while maintaining a plate 

count of 1000 for the Gaussian peak (a, = tmax/J1OOO). Different values for z result in 
different values for the peak asymmetry, as is illustrated in Fig. 3. The asymmetry 
factor in this picture was obtained from the simulated peak profiles at a fraction of 
13.5% ofthe peak height. It is seen that the present range of variation for r corresponds 
to a range 1 < A, < 3.23. In practical chromatograms all peaks may have similar 
asymmetry factors, but large variations in A, between successive peaks in a single 
chromatogram are also possible. For example, this is often the case in ion-pair 
chromatography with differently charged solutes. The situations examined in this 
paper were thought to provide the most severe tests for the proposed equations. 

At the heart of the present evaluation method is a comparison between the values 
obtained from the modified resolution equations (eqns. 22,24 and 25) and the relative 
overlap (eqns. 7 and 8), The relative overlap is thought to be the natural measure of 
chromatographic resolution. It is directly related to the extent to which a peak area can 
be used correctly for quantitative analysis, or the purity which can be obtained in 
a preparative separation. However, RO can only be determined if the individual peak 
profiles are known. In the present simulation study, the individual peak profiles are 
known so that a comparison can be made between the modified resolution functions 
and the relative overlap criterion. Ideally, a given value of RO should correspond to 
a unique value of the resolution, independent of the peak shape (asymmetry) and the 
peak-height ratio. If the calculated resolution value is plotted against RO, this ideal 
situation would lead to a single, monotonic line (i.e., no minima or maxima) for all 
different conditions. 

Further details of the evaluation procedure have been described elsewhereg. 

T-----l 
3 

t 2 

Aa’- 

5 

1 

I---1 
Oo 1 2 3 L 

T- 

Fig. 3. Relationship between the exponential decay factor T and the observed asymmetry factor at 13.5% of 
the peak height. Parameters for the Gaussian peak were t,,, = 15 min and o, = 0.474 min (corresponding 
to N = 1000). 
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RESULTS 

Fig. 4a shows the correlation between the resolution, calculated from eqn. 22, 
and the relative overlap for the first peak (ROJ for situations in which the asymmetry 
of the first peak is varied. In this situation, the two peaks are of equal area. When the 
asymmetry of the first peak increases, its height decreases and therefore the ratio of 
peak heights also varies. 

Along the horizontal axis, the difference in retention time between the peaks 
decreases from left to right, causing an increase in the relative overlap and a decrease in 
the calculated resolution. It is seen that there is little divergence between the different 
curves, so that the ideal situation of a single, monotonic relationship is approached. 
Only in the range where strong overlap occurs (i.e., where the relative overlap becomes 
high and the resolution low) are different values for the resolution obtained for the 
peaks of different asymmetry with the same RO value. In this range a lower value for 
the resolution is obtained when the first peak becomes less asymmetrical. 

Fig. 4b represents the same peak pairs as Fig. 4a, but both the resolution (eqn. 
22) and the relative overlap are now calculated for the second peak. Because the tail of 
the first peak stretches far into (or even beyond) the second peak, the resolution of the 
latter is usually more difficult to determine, However, the different curves, corre- 
sponding to different asymmetry factors for the first peak, are still fairly close together. 

In Fig. 5 the same peak pairs are characterized as in Fig. 4b, but the resolution is 
now calculated for the second peak with the approximated eqn. 24a. The results are 
seen to be virtually identical with those in Fig. 4b, and hence eqns. 24 and 24a are 
a good approximation of eqn. 22. This is of great practical value, because eqns. 24 and 
24a only require the retention times, plate counts and asymmetry factors for each 
individual peak. The plate count may be obtained from the peak width at any given 
fraction of the peak height (in this case N has been obtained from eqn. 21, using the 
a and h values measured at 13.5% of the peak height). The asymmetry factors should 

(a) 

‘Rst 

(Eqn. 22 I 

peak- orea ratio 1: 1 

0.6 CM 1 

R0, - 

- o-o 
__-___. 1 - 0 
--_ 2-O 
. . . . . . . . . . . . 3-o 
_.-._ 4-o 

peak-area ratio 1 : 1 

0.8 
ROz - 

Fig. 4. Relationship between the relative peak overlap and the modified resolution calculated from eqn. 22 

for two peaks of equal area. (a) Results for the first peak. (b) Results for the second peak. The exponential 
decay of the first peak was varied from z = 0 ( -), r = 1 (---------), z = 2 (- - -), and 5 = 3 

(. . .) to T = 4 min (- -. -). The second peak was symmetrical (z = 0). The retention time of the first 
peak was I5 min, that of the second peak was varied from 15.8 to 19 min. For both peaks the efficiency for 

the Gaussian function was taken to correspond to N = 1000. 
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p&-area mho 1: 1 

1 

Fig. 5. As Fig. 4b, except that the modified resolution was calculated from eqn. 24a. 

be obtained at 13.5% of the peak height. Eqn. 22 is much less attractive in practice, 
because it also requires the measurement of the peak width and asymmetry at the same 
fractions of the height of the preceding peak (and at the same fractions of the height of 
the following peak). 

Fig. 6a shows that eqn. 25a is still a useful approximation in this instance. 
However, eqn. 25b (Fig. 6b) yields resolution values that are poorly correlated with 
RO. This is understandable, because eqn. 25b is based on the peak width and 
asymmetry of the second peak, which was taken to be symmetrical, while the 
asymmetry of the first peak increased. Naturally, poor results are obtained if 
a (strongly) asymmetric peak is assumed to be symmetrical. Nevertheless, this is 
exactly what is done when the conventional resolution equation is applied in this 
situation. Conventionally, both peaks are assumed to be symmetrical and the plate 
count of a symmetrical peak (e.g., the second peak in the present peak pair) is used to 
calculate a value for N. Thus, a comparison of Figs. 4b, 5 and 6a with Fig. 6b serves to 
illustrate how much better it is to use the (approximated) modified resolution functions 
than it is to use the conventional resolution (eqn. 2). 

It is important to realize that Fig. 4a and b show the resolution values each for 
one of the two peaks. Both the relative overlap and the modified resolution equations 
are based on the understanding that the true extent of separation in non-ideal 

peak-area ratio 1 1 

ROz + 

- o-o 
______. 1 - 0 

--_ 2-O 
. . . . . . . . . . . 3 - 0 
_*-,_ L - 0 

peak-area ratio 1.1 

1 

+ I /, I1 I I, I 

Oo 0.2 0.4 0.6 0.8 
RO2 - 

1 

Fig. 6. As Fig. 4b, except that the modified resolution was calculated from (a) eqn. 25a and (b) eqn. 25b. 
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situations is different for the two peaks constituting a pair. However, because the areas 
of the two peaks are the same for the peak pairs used to make Fig. 4, the relative 
overlap is by definition the same for both peaks. Ideally, therefore, the curves in Fig. 4a 
and b should be identical, which is exactly true for the situation in which both peaks are 
Gaussian (solid lines). The extent of the deviation of the other curves from this line is 
a measure of the performance of eqn. 22. 

In Fig. 7 we show two sets of curves for a situation which is similar to that in Fig. 
4, except for the peak-area ratio. The area of the first peak is now four times larger than 
that of the second peak. As a result, the relative overlap is now much smaller for the 
first peak than it is for the second peak. This is seen in Fig. 7a. The highest possible RO 
for the first peak is 0.25. Increasing the asymmetry of the first peak is seen to have only 
a small effect on the relationship between the resolution calculated from eqn. 22 and 
RO. In Fig. 7b, which represents the data for the second peak, a different set of curves is 
observed, but again they are found close together, approaching the ideal situation. 

Fig. 8 illustrates that eqn. 24a is still a reasonable approximation of cqn. 22 for 
the second (more difficult) peak in the situation of a 4:1 peak-area ratio. However, 
a larger variation is found between the different lines in Fig. 8 than in Fig. 7b. If the 
peak-area ratio becomes 8:l (not shown), the difference between eqns. 22 and 24 
becomes larger. For large peak-area ratios the former, less practical equation does 
need to be used. Eqn. 22 is essentially identical with the approach previously suggested 
for dealing with very large solvent or matrix peaks in a chromatogram4. 

Fig. 9 illustrates the effect of varying peak-area ratios. In Fig. 9a the modified 
resolution is calculated from eqn. 24a for the second in a pair of symmetrical peaks. In 
this situation the asymmetry factors are equal to 1 and eqn. 24a reduces to eqn. 16a. It 
can be seen from Fig. 9a that eqns. 16 and 16a perform very well in situations in which 
two Gaussian peaks of different areas occur. 

When the asymmetry of the peaks increases, a less ideal picture of the calculated 
resolution vs. the relative overlap is obtained if eqn. 24 is used. For example, in Fig. 9b 
results are shown for a situation in which the first peak is asymmetrical (t = 2 min, 
i-C AO.125 

w 2) and the second peak is symmetrical (7 = 0). Whereas the different 
cugves‘ tend to converge at the high-resolution end (Le., at resolution values of 1 and 
higher, different resolution values may be calculated if the relative overlap (RO) of the 

(0) 

‘4 
(Eqn.22) 

peak-area mtii L : 1 

0.L 0.6 0.8 1 
ROi - 

- o-o 
----__. 1-o 
___ 2-O 
. . . . . . . . . . . 3-b 
--._ L-0 

peak-maratio 4:l 

L r L I,, 3 I I 

OO 0.2 0.4 0.6 OS 
R02 - 

Fig. 7. As Fig. 4, except that the area of the first peak was four times larger than that of the second peak. 
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2 
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“RJ 
_____.. 1 - 0 
--_ 2-O 
. . . . . . . . . I 3_ 0 
_.-._ L-0 

peak-area ratio 4: 1 

ROz - 

Fig. 8. As Fig. 7b, except that the modified resolution was calculated from eqn. 24a. 

second peak is at a constant, high value. If T = 1 min, the results are in between those 
in Fig. 9a and b, whereas they become slightly worse is z is increased further to 4 min 
(results not shown). 

Fig. 9b is an indication of the limitations of eqns. 24 and 24a. If the peak-area 
ratio starts to differ significantly from 1, the peaks are strongly asymmetric and the 
resolution is small, than eqn. 24 becomes too much of an approximation and only eqn. 
22 will yield good results. 

DISCUSSION 

We consider the performance of the modified resolution function as defined by 
eqn. 22, and closely approximated by eqns. 24 and 24a, to be highly satisfactory. Not 
only do the results compare very favourably with those that would be obtained with 
the conventional resolution function (compare, e.g., Figs. 5 and 6b), the results 

(a) 

2RSt 
( Eqn. 211 

(b) 2 

‘R,t 
(Eqn.2.L) 

T =2min - I:1 
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Fig. 9. Relationship between the relative peak overlap and the modified resolution calculated from eqn. 24a 
for the second of two peaks with different areas. (a) Both peaks symmetrical. (b) First peak asymmetric 
(T = 2 min, i.e., Ap.13’ x 2). Peak-area ratios: 1:l ( -),2:1(----),4:1 (-----),8:1 (......... ).The 
second peak was symmetrical (z = 0). The retention time of the first peak was 15 min, that of the second 
peak was varied from 15.8 to 19 min. For both peaks the efficiency for the Gaussian function was taken to 
correspond to N = 1000. 
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obtained with the present modified resolution function also compare favourably with 
other possible methods of characterizing the resolutiong. Eqns. 24 and 24a can be used 
as a more practical alternative to eqn. 22 except in situations in which the peaks are 
asymmetric or of greatly different areas and the relative overlap is high (Fig. 9b). Eqn. 
25 can be used if the plate counts and asymmetry factors are approximately constant 
throughout the chromatogram. Eqn. 16 can be used for Gaussian peaks of greatly 
different areas. 

Another important consideration is that resolution values can be calculated 
from eqn. 24 if (i) the retention time (or capacity factor), (ii) the peak width at 
half-height (plate count) and (iii) the asymmetry factor at 13.5% of the peak height are 
known. It appears to be feasible to keep track of these three parameters for each 
individual peak during interpretive optimization procedures’, so that the present 
approach can be used for this purpose. Empirical resolution functions, such as the 
ratio between the (average) peak height and the depth of the valley between peaks 
(peak-valley ratios) may be used to characterize the extent of separation, but cannot be 
used in interpretive optimization procedures. 

A second advantage of the present resolution functions in the context of 
optimization procedures is that a value can be calculated, even for very strongly 
overlapping peaks. The relative overlap will yield a value of RO = 1 for the small 
peak, even if the degree of separation is small. The modified resolution for the small 
peak will still be different from zero, so that small improvements in separation may be 
exploited during optimization. However, this will require that the individual peak 
profiles be known, either from individual injections of each sample component or from 
the deconvolution of multi-channel data. 

Whereas eqn. 24 was found to be an accurate approximation of eqn. 22, eqn. 25 
cannot always be used. Eqn. 25 can be used if the plate heights and asymmetries of all 
peaks are (approximately) the same. However, if the asymmetry varies as dramatically 
as in Fig. 5, eqn. 25b, in which the smaller of the two asymmetry factors is used, yields 
very poor results (Fig. 5b). This problem will bc even greater if the area of the first peak 
becomes larger than that of the second (not shown). In this situation the asymmetry 
factor of the least symmetrical peak may be used (see Fig. 5a), but we prefer to use the 
more complex eqn. 24 because (i) it is easier not to have to decide which of the two 
asymmetry factors (and plate counts) should be used and (ii) in order to make such 
a decision, the values for both peaks would usually need to be calculated anyway, so 
that there is no practical objection to using eqn. 24. 

The present approach has a limitation in the calculation of the peak-height 
correction for the larger peak in a separation concerning peaks of different height. Tf 
a peak is more than e2 (7.4) times larger than an adjacent peak, the square root in 
eqn. 24 becomes undefined. This is not a major problem, because it concerns the 
resolution for the large peak only. A reasonable value can be obtained by defining 

41 + l/z Whj/ h, to be equal to zero if hj/hi < e-‘. .I 

Chromatograms 
In our opinion, we have provided a thorough, objective evaluation of the 

modified resolution functions in the systematic study described above. Fig. 10 is 
intended to allow the reader to form a subjective opinion from a visual inspection of 
a number of peak pairs. with a varying degree of asymmetry of the first peak (t 
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Fig. 10. Calculated resolution values (eqns. 24 and 24a) for each peak in ten different peak pairs. l1 = 15 
min, 22 = 18 min. N = 1000 (for Gaussian peak). Exponential decay factors (r) and peak-area ratios vary, 
as indicated. The conventional resolution value is 1.44 for all peak pairs. 

increases from top to bottom) and for two different values of the peak-area ratio (1: 1 in 
the first column, 4: 1 in the second). For the Gaussian part of the first peak in each pair 
the retention time was 15 min and for the second 18 min. All peaks were calculated with 
a plate count of 1000 for the Gaussian peak. This implies that if the resolution is 
determined in the conventional way (eqn. 5), using the plate count as measured either 
from the second peak or from a standard injected separately, the first pair of peaks in 
Fig. 10 would have a resolution of 1.44. This value will decrease only slightly for 
asymmetric peaks owing to a marginal increase in the retention time of the peak 
maximum with increasing peak asymmetry (7). For all peak pairs the conventional 
resolution function yields values close to 1.4. 

In Fig. 10 the resolution values calculated from eqns. 24 and 24a are indicated for 
each peak. In the first pair (top left) both peaks are Gaussian. Because of the slightly 
different peak heights (equal area), the resolution is slightly higher than the 
conventional value for the first (larger) peak (1.47 instead of 1.44) and slightly lower 
for the second peak (1.41). However, in this situation there is very little difference 
between the conventional and modified resolution values. 

If the peak-area ratio increases to 4: 1 (top right), the modified resolution value 
increases to 2.03 for the first peak but decreases to 1.25 for the second, indicating that 
the separation of this pair is better for the first peak than it is for the second. To 
quantify small peaks next to large ones, a higher resolution is required than in the 
opposite situation. 

When the asymmetry of the first peak increases for two peaks of equal area (top 
to bottom in the left column), the modified resolution starts to decrease and actually 
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becomes lower for the lirst peak than for the second. For a peak-area ratio of 4: 1 (top 
to bottom in the left column) the loss in resolution is also larger for the first 
(asymmetric) peak. 

The reader is invited to make a subjective judgement of the modified resolution 
values shown for each peak in Fig. 10, bearing in mind that the conventional resolution 
function yields a value of 1.4 for each of the peak pairs in this figure. 

CONCLUSIONS 

(1) The modified resolution functions presented in this paper can be used to 
characterize the resolution in non-ideal situations. 

(2) The modified resolution function yields two values for the resolution of a pair 
of peaks, one for each peak. The largest value (best separation) will be obtained for the 
largest peak. 

(3) A good correlation is obtained between the modified resolution and the 
relative peak overlap. Variations in the peak asymmetry and the relative peak area are 
shown to have a minor effect on this relationship. In this respect, the modified 
resolution behaves better than alternative peak-separation characteristics. 

(4) The modified resolution function (eqn. 22) can be adequately approximated 
by a simpler equation (eqn. 24), which requires only the retention time, peak width and 
asymmetry factor of each individual peak. 

(5) Because of the previous conclusion, the modified resolution function can be 
used in combination with interpretive optimization procedures. 

(6) If the efficiency and the peak asymmetry are (roughly) constant for all peaks 
in the chromatogram, eqns. 25 and 25b may be used as a further approximation of eqn. 
22. If this condition is not met, we recommend the use of eqns. 24 and 24a. 

(7) For Gaussian peaks with different areas eqns. 16 and 16a provide a very 
simple and effective correction for the resolution 

(8) If the peaks are strongly asymmetric the peak-area ratio is high and the 
resolution is low, the more complex eqn. 22 should be used, which requires monitoring 
of the peak width and asymmetry of each peak at a given fraction of its own height, in 
addition to that of its neighbours. 
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